3.30 \(\int (c+d x) \csc ^2(a+b x) \, dx\)

Optimal. Leaf size=29 \[ \frac{d \log (\sin (a+b x))}{b^2}-\frac{(c+d x) \cot (a+b x)}{b} \]

[Out]

-(((c + d*x)*Cot[a + b*x])/b) + (d*Log[Sin[a + b*x]])/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.0276419, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {4184, 3475} \[ \frac{d \log (\sin (a+b x))}{b^2}-\frac{(c+d x) \cot (a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)*Csc[a + b*x]^2,x]

[Out]

-(((c + d*x)*Cot[a + b*x])/b) + (d*Log[Sin[a + b*x]])/b^2

Rule 4184

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Simp[((c + d*x)^m*Cot[e + f*x])/f, x]
+ Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (c+d x) \csc ^2(a+b x) \, dx &=-\frac{(c+d x) \cot (a+b x)}{b}+\frac{d \int \cot (a+b x) \, dx}{b}\\ &=-\frac{(c+d x) \cot (a+b x)}{b}+\frac{d \log (\sin (a+b x))}{b^2}\\ \end{align*}

Mathematica [A]  time = 0.0835127, size = 52, normalized size = 1.79 \[ \frac{d \log (\sin (a+b x))}{b^2}-\frac{c \cot (a+b x)}{b}-\frac{d x \cot (a)}{b}+\frac{d x \csc (a) \sin (b x) \csc (a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)*Csc[a + b*x]^2,x]

[Out]

-((d*x*Cot[a])/b) - (c*Cot[a + b*x])/b + (d*Log[Sin[a + b*x]])/b^2 + (d*x*Csc[a]*Csc[a + b*x]*Sin[b*x])/b

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 39, normalized size = 1.3 \begin{align*} -{\frac{d\cot \left ( bx+a \right ) x}{b}}+{\frac{d\ln \left ( \sin \left ( bx+a \right ) \right ) }{{b}^{2}}}-{\frac{c\cot \left ( bx+a \right ) }{b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)*csc(b*x+a)^2,x)

[Out]

-1/b*d*cot(b*x+a)*x+d*ln(sin(b*x+a))/b^2-1/b*c*cot(b*x+a)

________________________________________________________________________________________

Maxima [B]  time = 1.00505, size = 293, normalized size = 10.1 \begin{align*} \frac{\frac{{\left ({\left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1\right ) +{\left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1\right ) - 4 \,{\left (b x + a\right )} \sin \left (2 \, b x + 2 \, a\right )\right )} d}{{\left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} b} - \frac{2 \, c}{\tan \left (b x + a\right )} + \frac{2 \, a d}{b \tan \left (b x + a\right )}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csc(b*x+a)^2,x, algorithm="maxima")

[Out]

1/2*(((cos(2*b*x + 2*a)^2 + sin(2*b*x + 2*a)^2 - 2*cos(2*b*x + 2*a) + 1)*log(cos(b*x + a)^2 + sin(b*x + a)^2 +
 2*cos(b*x + a) + 1) + (cos(2*b*x + 2*a)^2 + sin(2*b*x + 2*a)^2 - 2*cos(2*b*x + 2*a) + 1)*log(cos(b*x + a)^2 +
 sin(b*x + a)^2 - 2*cos(b*x + a) + 1) - 4*(b*x + a)*sin(2*b*x + 2*a))*d/((cos(2*b*x + 2*a)^2 + sin(2*b*x + 2*a
)^2 - 2*cos(2*b*x + 2*a) + 1)*b) - 2*c/tan(b*x + a) + 2*a*d/(b*tan(b*x + a)))/b

________________________________________________________________________________________

Fricas [A]  time = 1.70285, size = 119, normalized size = 4.1 \begin{align*} \frac{d \log \left (\frac{1}{2} \, \sin \left (b x + a\right )\right ) \sin \left (b x + a\right ) -{\left (b d x + b c\right )} \cos \left (b x + a\right )}{b^{2} \sin \left (b x + a\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csc(b*x+a)^2,x, algorithm="fricas")

[Out]

(d*log(1/2*sin(b*x + a))*sin(b*x + a) - (b*d*x + b*c)*cos(b*x + a))/(b^2*sin(b*x + a))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (c + d x\right ) \csc ^{2}{\left (a + b x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csc(b*x+a)**2,x)

[Out]

Integral((c + d*x)*csc(a + b*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 2.02759, size = 1689, normalized size = 58.24 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csc(b*x+a)^2,x, algorithm="giac")

[Out]

1/2*(b*d*x*tan(1/2*b*x)^2*tan(1/2*a)^2 + b*c*tan(1/2*b*x)^2*tan(1/2*a)^2 - b*d*x*tan(1/2*b*x)^2 - 4*b*d*x*tan(
1/2*b*x)*tan(1/2*a) + d*log(16*(tan(1/2*a)^4 + 2*tan(1/2*a)^2 + 1)/(tan(1/2*b*x)^8*tan(1/2*a)^2 + 2*tan(1/2*b*
x)^7*tan(1/2*a)^3 + tan(1/2*b*x)^6*tan(1/2*a)^4 - 2*tan(1/2*b*x)^7*tan(1/2*a) - 2*tan(1/2*b*x)^6*tan(1/2*a)^2
+ 2*tan(1/2*b*x)^5*tan(1/2*a)^3 + 2*tan(1/2*b*x)^4*tan(1/2*a)^4 + tan(1/2*b*x)^6 - 2*tan(1/2*b*x)^5*tan(1/2*a)
 - 6*tan(1/2*b*x)^4*tan(1/2*a)^2 - 2*tan(1/2*b*x)^3*tan(1/2*a)^3 + tan(1/2*b*x)^2*tan(1/2*a)^4 + 2*tan(1/2*b*x
)^4 + 2*tan(1/2*b*x)^3*tan(1/2*a) - 2*tan(1/2*b*x)^2*tan(1/2*a)^2 - 2*tan(1/2*b*x)*tan(1/2*a)^3 + tan(1/2*b*x)
^2 + 2*tan(1/2*b*x)*tan(1/2*a) + tan(1/2*a)^2))*tan(1/2*b*x)^2*tan(1/2*a) - b*d*x*tan(1/2*a)^2 + d*log(16*(tan
(1/2*a)^4 + 2*tan(1/2*a)^2 + 1)/(tan(1/2*b*x)^8*tan(1/2*a)^2 + 2*tan(1/2*b*x)^7*tan(1/2*a)^3 + tan(1/2*b*x)^6*
tan(1/2*a)^4 - 2*tan(1/2*b*x)^7*tan(1/2*a) - 2*tan(1/2*b*x)^6*tan(1/2*a)^2 + 2*tan(1/2*b*x)^5*tan(1/2*a)^3 + 2
*tan(1/2*b*x)^4*tan(1/2*a)^4 + tan(1/2*b*x)^6 - 2*tan(1/2*b*x)^5*tan(1/2*a) - 6*tan(1/2*b*x)^4*tan(1/2*a)^2 -
2*tan(1/2*b*x)^3*tan(1/2*a)^3 + tan(1/2*b*x)^2*tan(1/2*a)^4 + 2*tan(1/2*b*x)^4 + 2*tan(1/2*b*x)^3*tan(1/2*a) -
 2*tan(1/2*b*x)^2*tan(1/2*a)^2 - 2*tan(1/2*b*x)*tan(1/2*a)^3 + tan(1/2*b*x)^2 + 2*tan(1/2*b*x)*tan(1/2*a) + ta
n(1/2*a)^2))*tan(1/2*b*x)*tan(1/2*a)^2 - b*c*tan(1/2*b*x)^2 - 4*b*c*tan(1/2*b*x)*tan(1/2*a) - b*c*tan(1/2*a)^2
 + b*d*x - d*log(16*(tan(1/2*a)^4 + 2*tan(1/2*a)^2 + 1)/(tan(1/2*b*x)^8*tan(1/2*a)^2 + 2*tan(1/2*b*x)^7*tan(1/
2*a)^3 + tan(1/2*b*x)^6*tan(1/2*a)^4 - 2*tan(1/2*b*x)^7*tan(1/2*a) - 2*tan(1/2*b*x)^6*tan(1/2*a)^2 + 2*tan(1/2
*b*x)^5*tan(1/2*a)^3 + 2*tan(1/2*b*x)^4*tan(1/2*a)^4 + tan(1/2*b*x)^6 - 2*tan(1/2*b*x)^5*tan(1/2*a) - 6*tan(1/
2*b*x)^4*tan(1/2*a)^2 - 2*tan(1/2*b*x)^3*tan(1/2*a)^3 + tan(1/2*b*x)^2*tan(1/2*a)^4 + 2*tan(1/2*b*x)^4 + 2*tan
(1/2*b*x)^3*tan(1/2*a) - 2*tan(1/2*b*x)^2*tan(1/2*a)^2 - 2*tan(1/2*b*x)*tan(1/2*a)^3 + tan(1/2*b*x)^2 + 2*tan(
1/2*b*x)*tan(1/2*a) + tan(1/2*a)^2))*tan(1/2*b*x) - d*log(16*(tan(1/2*a)^4 + 2*tan(1/2*a)^2 + 1)/(tan(1/2*b*x)
^8*tan(1/2*a)^2 + 2*tan(1/2*b*x)^7*tan(1/2*a)^3 + tan(1/2*b*x)^6*tan(1/2*a)^4 - 2*tan(1/2*b*x)^7*tan(1/2*a) -
2*tan(1/2*b*x)^6*tan(1/2*a)^2 + 2*tan(1/2*b*x)^5*tan(1/2*a)^3 + 2*tan(1/2*b*x)^4*tan(1/2*a)^4 + tan(1/2*b*x)^6
 - 2*tan(1/2*b*x)^5*tan(1/2*a) - 6*tan(1/2*b*x)^4*tan(1/2*a)^2 - 2*tan(1/2*b*x)^3*tan(1/2*a)^3 + tan(1/2*b*x)^
2*tan(1/2*a)^4 + 2*tan(1/2*b*x)^4 + 2*tan(1/2*b*x)^3*tan(1/2*a) - 2*tan(1/2*b*x)^2*tan(1/2*a)^2 - 2*tan(1/2*b*
x)*tan(1/2*a)^3 + tan(1/2*b*x)^2 + 2*tan(1/2*b*x)*tan(1/2*a) + tan(1/2*a)^2))*tan(1/2*a) + b*c)/(b^2*tan(1/2*b
*x)^2*tan(1/2*a) + b^2*tan(1/2*b*x)*tan(1/2*a)^2 - b^2*tan(1/2*b*x) - b^2*tan(1/2*a))